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Abstract

Electrophysiological signal consist of two components: a periodic part generated by neural
oscillation and an aperiodic part following the power law. Studies have shown it will be
problematic without dissociating these two components. These two parts have been linked to
many cognitive processes, for example, attention. Although there are many investigations on
the periodic parts, however, they have never been jointly studied. Here we dissociated these
two components from local field potential data in V1 and V4 during covert attention task.
We found fast timescale was shorter in V4 during attention. Power of low frequency range
oscillation was decreased during attention, while high frequency power was increased. These
findings shed light on the functional role of aperiodic and periodic components during covert
attention, paving the way for further studies into these two linked signals in human cognition.
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1 Introduction

Periodic neural activity, neural oscillation, plays an essential role in numerous per-
ceptual and cognitive processes, including attention (Jia et al., 2022; van Kerkoerle
et al., 2014; Gilbert and Li, 2013). A large body of literature analyzes oscillations in
different canonical frequency bands and defines their functional roles (Yuasa et al.,
2023; Ferro et al., 2021). For example, low-frequency oscillation, which carries feedfor-
ward information, has been proposed to suppress irrelevant unattended information
during visual attention. While high-frequency gamma-band oscillation, modulated
by feedback projections, increases the task-relevant signal (Mejias et al., 2016).

In addition to the functional role of periodic signals, studies nowadays have
focused on interpreting non-oscillatory or aperiodic neural activities in cognition
(Donoghue et al., 2020; Gao et al., 2020; Zeraati et al., 2022). The intrinsic timescale
(τ) of aperiodic signals characterizes synaptic and cell-intrinsic properties, and the
dynamics of neural interaction in cognitive processes. Zeraati et al. (2021) found
attentional modulation of timescales on V4 in a visual-spatial attention task.

Emerging studies of aperiodic signals indicate problems in the traditional analysis
of neural oscillations (Donoghue et al., 2020). Simply classifying neural activities
in canonical frequency bands can conflate oscillations and aperiodic activities, in-
creasing false-positive rates. Given these new findings, dissociating periodic and
aperiodic neural dynamics is crucial to define the functional role of different neural
oscillations and timescales in a cognitive process. However, so far there’s no study
jointly analyzing periodic and aperiodic components during attention.

Here, we built an in-house model to dissociate these two components and de-
signed a fitting procedure based on ’Fitting Oscillations & One Over F’ (FOOOF)
(Donoghue et al., 2020). Compared to FOOOF, our algorithm significantly improved
the goodness of fitting. We then examined how the changing state of attention
affected the periodic and aperiodic components of local field potential (LFP) in the
visual cortex. We analyzed LFP data recorded from cortical columns in primate areas
V1 and V4 during a covert, feature-guided spatial attention task Ferro et al. (2021).
For neural oscillations, the alpha-band oscillation was suppressed during attention,
while the power of gamma-band oscillation increased. The fast timescale was shorter
for the aperiodic neural dynamics when the monkey attended to the receptive fields
of the recorded neurons in V4. These findings support the crucial function of alpha
and gamma band neural oscillation during attention (van Kerkoerle et al., 2014).
They also provide insights into the neural mechanism of faster information processing
with voluntary attention.

2 Methods

2.1 Dissociating periodic and aperiodic components

For the investigation of periodic and aperiodic components, it is essential to separate
the two parts. Among several toolboxes aiming to dissociate aperiodic and periodic
components, FOOOF is the most popular(Donoghue et al., 2020; Wen and Liu, 2016).
FOOOF fits neurophysiology data with aperiodic and periodic components in the
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Figure 1: Aperiodic components in FOOOF and our model.

frequency domain (Equation 1-3). The aperiodic component L(F ) is parameterized
by a offset, exponent and a timescale τ (τ = 1

2πfk
), following a power law in log scale

(Equation 2). The periodic component G(F )n has a variable number of peaks (puta-
tive oscillation), while each peak is a Gaussian distribution with central frequency,
power and bandwidth (Equation 3).

NPS(F ) = L(F ) +G(F )n (1)

L(F ) = b− log(k + fχ) (2)

G(F )n = a ∗ exp(−(F − c)2

2 ∗ ω2
) (3)

FOOOF assumed one intrinsic timescale of neural activity in all cognitive pro-
cesses, resulting in a bent curve of the aperiodic component (Figure 1a). However,
studies using electrocorticography (ECoG) data revealed a flat plateau at the in-
termediate frequency range and two distinctive power law functions at very low
and higher frequencies (Freeman and Zhai, 2009; Chaudhuri et al., 2018). This
shape implies there might be multiple intrinsic timescales (Zeraati et al., 2021).
This inconsistency might lead to underestimate of exponent and bias towards larger
timescale (Gerster et al., 2022). To address this issue, we built a model of the ape-
riodic component with a function including two timescales (Equation 4-5) (Figure 1b).

AP = 10b0 ∗ ( 1

fχ1

k1
+ F χ1

+
b1

fχ2

k2
+ F χ2

) (4)

L(F ) = b0+ log(fχ2

k2
+F χ2 + b1 ∗ (fχ1

k1
+F χ1))− log(fχ1

k1
+F χ1)− log(fχ2

k2
+F χ2) (5)

To characterize signals using the model, we designed an algorithm based on
FOOOF (Figure 2). The algorithm first estimates the aperiodic component and
removes it from the original signal. Then it iteratively fits neural oscillations charac-
terized by their center frequency, power and bandwidth until the remaining signal falls
below the noise threshold. After extracting the periodic component, the algorithm
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Figure 2: Algorithm schematic on real data.
(a), The PSD is first fit with an estimated fast aperiodic component (blue). (b), The parameters
from initial fitting are used to estimate a full aperiodic component (blue). (c), The estimated
aperiodic signal is subtracted from original PSD, the residuals are used to generate a threshold in d
(red). (d-f), The maximum of residuals is considered as peak (orange). Then we fit a Gaussian with
estimated bandwidth on it (green). After that, the estimated Gaussian is removed from signals
in d. We find peaks iteratively untill the maximum of residuals is below threshold. (g), Then we
sum the multi-Gaussian fit as periodic component. (h-i), The periodic component is removed from
original PSD and used to estimate a full aperiodic component (blue). (j) The final fit is the sum of
aperiodic and periodic component.

removes it from the original signal and refits the aperiodic component to improve the
fitting. Finally, following (Equation 4-5), this re-fit aperiodic component is combined
with the periodic component to give the final fit. Overall, this algorithm parameterizes
power spectrum density (PSD) using aperiodic and periodic components (Equation 1).

2.2 Experimental data

We used LFP data recorded from V1 and V4 while the money was in a visual spatial
attention task (Ferro et al., 2021). In brief, to start a trial, the monkey had to touch
a lever and gaze at a centrally placed fixation point (FP). After 500ms of the fixation
onset, three moving grating stimuli appeared, coded with different colors and located
equidistant from FP. At a random delay after the stimulus onset (between 630 to 960
ms, uniformly distributed), a colored cue occurred at FP, instructing the monkey
to monitor the stimulus with the same color. Then after three random delays, the
colors of the stimulus were dimmed subsequently (delay for the first dimming ranging
from 1160 to 1820 ms, for the second and third dimming from 790 to 1120 ms). The
monkey was supposed to release the touch bar when the cued color was dimmed.
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Figure 3: Covert, feature-guided visuo-spatial attention task

The LFP data were recorded over 32 sessions from different laminar (supra-
granular, granular, and infra-granular) in V1 and V4. We used the signals from the
time window of 1s before the first dimming (N=1024 time points at 1017.375Hz
sampling rate) in correct trials. For 1/3 of the trials in each session, the receptive
field of the recorded neurons was cued. This yielded 1/3 of the trials during covert
attention (attention), while the rest trials were not cued (control). We generated
PSD for attention and control conditions separately for each session. Specifically, we
performed discrete Fourier Transform (DFT) on each trial in the attention condition
and half of the trials in control condition, then averaged spectrum in each condition.
Then we fitted the power spectrum in each session using our algorithm described in
the previous section.

3 Results

3.1 Goodness of fitting

Our algorithm achieved a better fitting result compared to FOOOF. As shown in
Fig. xa, our model fitted the low-frequency range (4-13 Hz) better by introducing
the power law function in a slow timescale. Global goodness-of-fit measure R2 was
significantly improved in all our fitting (Figure 4).

3.2 Power and central frequency of periodic components

In line with previous studies, we analyzed the power and central frequency of peri-
odic components. We performed the analysis within widely used frequency ranges,
namely theta-band below 8 Hz, alpha-band from 8 to 13 Hz, beta-band from 13
to 25 Hz, low gamma-band from 25 to 50 Hz, and high gamma-band from 50 to 80 Hz.

In V1, attention increased beta and low gamma-frequency peak power (Figure
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Figure 4: Goodness of fitting.
(a), Fitting result of our model and FOOOF model on LFP data in one session during attention.
(b), Goodness-of-fit measure R2 on all sessions.

5a,c). Attending to the RF also resulted in a lower peak location in beta and a higher
location in low gamma-frequency band compared to control conditions (two-sided
Wilcoxon signed-rank test).

Increases in beta-frequency peak power and decreases in alpha-frequency power
were found in V4 (Figure 5b,d). The peak location in beta frequency was also shifted
towards a higher frequency (two-sided Wilcoxon signed-rank test).

3.3 Shorter fast timescale during attention

For the aperiodic component, we found the fast timescale is shorter during attention
(Figure 6). This difference is significant for all laminar in V4 and infragranular in V1
(n=32, paired t-test with Bonferroni correction). There is no significant change in
the slow timescale during attention.

4 Discussion

Our investigation focused on how periodic and aperiodic signals are modulated by
attention. We used LFP data among laminar within V1 and V4 columns while
the monkey was performing a visual-spatial covert attention task. We developed
an algorithm to dissociate these two components from LFP signals and analyzed
the timescale of neural activities, oscillation power, and central frequency during
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Figure 5: Power and central frequency of periodic components.
(a), Power of neural oscillation between attention and control in V1. (b), Power of neural oscillation
between attention and control in V4. (c) Central frequency of neural oscillation between attention
and control in V1. (d) Central frequency of neural oscillation between attention and control in V4.
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Figure 6: Fast timescale of aperiodic components.
(a), Fast timescale of neural activities between attention and control of infra-granular in V1. (b),
Fast timescale of neural activities between attention and control of granular in V1. (c) Fast timescale
of neural activities between attention and control of supra-granular in V1. (d), Fast timescale of
neural activities between attention and control of infra-granular in V4. (e), Fast timescale of neural
activities between attention and control of granular in V4. (f) Fast timescale of neural activities
between attention and control of supra-granular in V4.
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attention. We found attending to the RF increased the power of neural oscillations
in higher frequency ranges and decreased it in lower frequency ranges. Attention also
resulted in a peak shift to a higher frequency in V4. Also, the fast intrinsic timescale
is shorter during attention among all laminar in V4.

For neural oscillations, we found decreased oscillation power in the low-frequency
range and increased power in high frequency during attention. Previous studies have
shown gamma oscillations are usually associated with feedforward pathways (Mejias
et al., 2016; van Kerkoerle et al., 2014). Also, a study using magnetoencephalogram
(MEG) found that increased alpha band power was correlated with prediction errors
(Dijk et al., 2008). These findings suggest attention improves perception accuracy by
improving discrimination ability and enhancing feedforward communication in V1.
Also, peak locations in the low gamma range differed between attention and control
conditions. This is consistent with previous studies using electrocorticography surface
recording and LFP data Ferro et al. (2021); Xing et al. (2012). Ray and Maunsell
(2010) has found that the peak frequency of gamma activity increased with stimulus
strength, while Xing et al. (2012) found the peak frequency was higher with increased
consciousness. This frequency-shift phenomenon can be explained by changing the
timescales of inhibition and excitation, as we discussed below. Increasing vigilance
and stimulus strength shorten the timescale of the primary visual network.

We found fast timescale is shorter in V4 during attention, which is inconsistent
with Zeraati et al. (2021). This might be due to fitting issues in large time lags.
Previous studies have shown that neuronal timescales reflect cell-intrinsic properties
and anatomical connectivity and are functionally flexible and relevant to the cognitive
state (Gao et al., 2020). Our results are in line with this finding. Besides, studies
found the intrinsic timescale modulated by cognitive processes can be simulated by
changing recurrent input in a spatial network model (Zeraati et al., 2021; Xing et al.,
2012). Together with the results in periodic signals, covert attention changes the
spatial connectivity in the primary visual cortex to enhance feedforward signals from
attended objects/locations.

Overall, the current work dissociated periodic and aperiodic components in neural
signals and studied the neural mechanism of covert attention. These results raise
further questions regarding neural dynamics in different behavior demands. On the
one hand, intrinsic timescales are flexible with behavior state; on the other hand,
timescales are also shaped by macro- and microarchitectural properties. How these
two factors modulate cognitive processes together remains to be investigated. Also,
further study should look into the information flow during attention. The spatially
and temporally detailed picture of neural activities during attention will shed light
on recent ideas of computation-through-dynamics.
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