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Abstract
In decision-making research, the speed-accuracy trade-
off (SAT) is a pivotal concept, with prior studies demon-
strating its optimization influenced by factors such as the
system’s internal noise and stimuli reliability (or uncer-
tainty). Extending this understanding from conventional
decision-making paradigms to spatial contexts, our study
employs a ring attractor model to delve into the impact
of external uncertainty and internal noise on the criti-
cal dynamics (or bifurcations) that accompany decision-
making. Our findings reveal that increased internal noise
delays the onset of this bifurcation, biasing decision ac-
curacy over speed. Conversely, signal uncertainty ex-
erts a U-shaped effect on the emergence of this bifur-
cation—moderate uncertainty accentuates speed, while
low and high uncertainties favor accuracy. These in-
sights contribute to our understanding of how SAT op-
erates within spatial decision-making frameworks, partic-
ularly in complex environmental settings.

Keywords: Speed accuracy trade-off; Decision-making; Ring
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Introduction
Rapid and accurate decision-making among multiple spatial
options is a fundamental challenge animals face in their daily
life. Speed-accuracy trade-off (SAT) in these decisions is cru-
cial, impacting survival in scenarios as varied as locating one
of the trees as shelter at night or seeking paths to evade
predators in the field.

Research on insects and zebrafishes has shown that dur-
ing spatial navigation, the decision is usually made at a crit-

ical point (Sridhar et al., 2021). Initially, these animals might
navigate towards an intermediate point between two choices.
However, as the separation angle between these targets
reaches a specific threshold, they commit to one target (Fig.
1A). This critical angle marks a dynamic shift within the sys-
tem, enhancing sensitivity to quality differences between ex-
ternal stimuli (Amil & Verschure, 2021; Cocchi, Gollo, Zalesky,
& Breakspear, 2017). Making a decision either before or after
this critical point can lead to suboptimal outcomes: premature
decisions may compromise accuracy, while delayed decisions
could extend the overall journey unnecessarily. Consequently,
this bifurcation is pivotal for SAT in spatial decision-making.

Research has found that both human and non-human ani-
mals can fine-tune their SAT strategies to optimize outcome
under varying external and internal conditions (Bertucco,
Bhanpuri, & Sanger, 2015; Manohar et al., 2015; Mendonça
et al., 2020). When the stimuli reliability is low, decelerating
the decision process allows more time for evidence accumula-
tion; conversely, when immediate rewards are prioritized, ac-
celerating the decision process can minimize the wait time for
these rewards. However, in more complex spatial tasks, the
modulation of SAT strategies remains less understood.

In our study, we use the ring-attractor model to exam-
ine how signal reliability (or external uncertainty) and sys-
tem’s internal noise impact SAT in two-choice spatial decision-
making. We found that increased internal noise correlates
with a larger decision-making angle, which extends the time
required for evidence accumulation and consequently in-
creases the travel distance. Conversely, external uncertainty
exhibits a U-shaped relationship with this critical angle, in-
dicating that with very small uncertainty, decision-making is
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Figure 1: Trajectory density map of fruit flies navigating towards two
identical targets (indicated by red dots), with the black line depicting
a model fit to the trajectories (Sridhar et al., 2021). Initially, flies con-
verge towards a target following an average direction; upon reaching
a critical egocentric separation angle, they decisively turn towards
one arbitrary target. B) Simplified ring attractor model. The sim-
plified model consists of six excitatory neuron (red circles) and one
inhibitory neuron (blue circle) (note there are 90 excitatory neurons
in our model). All the neurons are self-connected and connected to
each other. C) External inputs are two Gaussian function centered
at different target directions. D-F) Signal integration of two input sig-
nals on ring attractor model. (E) For inputs with closely aligned di-
rections, the model predicts an integrated signal that represents the
average direction (black line). (F) For inputs with widely separated
directions, the model (integrated signal) arbitrarily converges to one,
or the other, input signal direction (black line).

slow due to the need for more extensive evidence accumula-
tion with reliable but conflicting cues. These findings provide
valuable insights into the interplay between noise, uncertainty,
and SAT in decision-making, deepening our understanding of
the underlying computational mechanisms involved in spatial
choices.

Ring attractor model
The ring attractor model is a computational framework used
in spatial sensory information integration (Kutschireiter, Bas-
nak, Wilson, & Drugowitsch, 2023; Hulse & Jayaraman, 2020;
Wilson, 2023). It is characterized by its consistent output—a
Gaussian profile with a single peak—regardless of the vari-
ability in input signals (Wang & Zhang, 2020). The location of
this integrated peak can be modulated by separation angle of
inputs (θ): when θ is small, the peak will be at average of input
peaks (Fig. 1E); when θ is big, the peak will bifurcate to align
with one of the inputs (Fig. 1F). The ring attractor model has
recently been employed to elucidate spatial decision-making
at the behavioral level (Sridhar et al., 2021).

We took advantage of the information integration proper-
ties of ring attractor model to study the effect of noise in spa-
tial decision making. Specifically, we constructed a Touretsky
ring attractor model which comprises a single inhibitory neu-
ron and 90 excitatory neurons, each with a unique preferred
direction that collectively spans the entire navigational space

(Sun, Mangan, & Yue, 2018; Touretzky, 2005).

Network Dynamics. We combined nonlinear activation
function and integrate-and-fire model to simulate each neu-
ron’s activity (Brette & Gerstner, 2005). The average mem-
brance potential of neuron m at time t, denoted as um(t),
evolves according to a differential equation that factors in
time constants (τm), resting potentials (umrest), and leak re-
sistances (Rm = 1) unique to each population of neurons
(Eq. 1). For excitatory neurons, these parameters are set to
τ= 0.05, urest =−1.5, and for the inhibitory neuron τ= 0.005,
urest = −7.5. The nonlinear property is achieved by a ReLU
function (Eq. 2) (Agarap, 2019).

τm
dum

dt
= f (−[um(t)−umrest]+RmIm(t)) (1)

f (x) = max(0,x) (2)

The input Im to neuron m, comprises network-induced current
(internal input) and target-induced currents (external input).
The internal input is the weighted sum of all neurons’ outputs
and Gaussian internal noise N(0,σn) (Eq. 3). The connec-
tivity weight between excitatory neurons is set as a Gaussian
function of the angular distance between their preferred direc-
tions, with standard deviation σw set to π/3 (Eq. 4, Fig. 1E).

Im(t) =
N

∑
n

wn→mun(t)+ξN(0,σn)+KΦ(
θm −θext

σext
) (3)

wn→m = exp(
−|θn −θm|2

2σ2
w

) (4)

The external input is a time-constant Gaussian curve peaked
at target direction θext (Eq. 3, Fig. 1F). Here, K is the scale
factor, and σ2

ext represents the variance, hence determining
the external uncertainty.

Simulating Decision Making. We examined the critical bi-
furcation phenomenon, where the output direction switched
from average direction to align with one of the targets. The
critical angle is identified as the smallest separation angle that
causes this shift in all the simulated trajectories (N=100).

We simulated the network activity under each combination
of internal noise and external uncertainty. We varied internal
noise in the range [.1, 5] and external [1, 37]. These simu-
lations were conducted at varying target separation angles θ

(Fig. 2A), with the output direction updated at 1 ms intervals.

Results
We found critical bifurcation angle in the simulated trajectories
(Fig. 2B). There exists a critical angle beyond which the net-
work’s output aligns with the direction of one of the targets,
(Fig. 2D). This dynamics contrasts with conditions below the
critical angle, where the network’s output tends to represent
an average direction between the two targets (Fig. 2C).

The critical angle is influenced by the levels of internal noise
and external uncertainty within the system. Our result indi-
cates that the critical angle increases with higher levels of in-
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Figure 2: Results. A) Egocentric separation angle θ between targets
(red dots). The orange and green curve denotes inputs to the ring at-
tractor model. B-D) Direction trajectories at different separation angle
θ when σn = 0.8 and σext = 13. B) Proportion of trajectories aligned
to a target direction increases dramatically around crtical angle. C)
When θ was less than θcritical , simulated trajectories consistently
align with the average direction between the two targets. D) when θ

was bigger than θcritical , each simulated trajectory converge to one
of the target directions arbitrarily. E) Maps the critical critical angle
across varying levels of external noise and internal noise. Trajecto-
ries reflecting these bifurcations are presented in Panels B-D. White
spots highlight conditions leading to unstable bifurcation in Panel H.
F) The critical bifurcation angle increases with internal noise G) The
bifurcation angle decreases and increases with external uncertainty.
H) Chaotic condition (σn = 5.0,σext = 22) where trajectory bifurca-
tion remains unstable and cannot settle on a consistent direction.

ternal noise (Fig. 2F). However, when both external uncer-
tainty and internal noise are minimal, the critical angle is max-
imized (Fig. 2E). External uncertainty modulates critical angle
in a U-shape manner, when uncertainty increases, the bifur-
cation angle initially decreases and then increases (Fig. 2G).

Additionally, under certain combinations of internal noise
and external uncertainty, the network exhibits stochastic dy-
namics, as shown in white space in (Fig. 2E). In these sce-
narios, the output direction fluctuates unpredictably between
the two target directions without stabilizing on either (Fig. 2H).

Conclusion
We investigated how external uncertainty and internal noise
would influence crtical bifurcation in spatial decision-making.
The findings indicate that increased internal noise slows down
the decision-making process and extends the travel distance
required to reach the critical phase. Interestingly, both mini-
mal and substantial levels of external uncertainty had similar
effects. This modulation on the critical phase in dynamics pro-
vides new perspectives into SAT in spatial decision-making.
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